Composting kinetics in full-scale mechanical–biological treatment plants

Marco Baptista a,b,*, Fernando Antunes c, Manuel Soutelo Gonçalves b, Bernard Morvan d, Ana Silveira e

a Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
b Unidade de Ambiente e Recursos Naturais, Instituto Nacional de Investigação Agrária, Instituto Nacional de Recursos Biológicos, F.P. Apartado 3228, 1301-903 Lisboa, Portugal
c Departamento e Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Ed. C3, Campo Grande, P-1749-016 Lisboa, Portugal
d Cerexad, 17 Avenue de Caille, CS 64407, F-35044 Brestes cédex, France

ARTICLE INFO

Article history:
Received 5 February 2010
Accepted 24 April 2010
Available online 20 May 2010

ABSTRACT

This study focuses on the investigation of the kinetics of municipal solid waste composting in three full-scale mechanical–biological treatment (MBT) plants. The aims were to test a kinetic model based on volatile solids (VS) content change for describing the composting process in MBT plants, and to identify the model parameters that affected the estimation of the reaction rate constant. To achieve this, VS content and several environmental conditions, namely temperature, moisture content, oxygen concentration and total bulk density were monitored throughout the composting process. Experimental data was fitted with a first-order kinetic model, and a rate constant (k) characteristic of composting under optimum environmental conditions was obtained. The kinetic model satisfactorily described the experimental data for the three MBT plants. k values ranged from 0.004 ± 0.002 d⁻¹ to 0.082 ± 0.011 d⁻¹. Sensitivity analysis showed that the model parameters that most affected the estimation of k were the initial biodegradable volatile solids content, the maximum temperature for biodegradation and the optimum moisture content. In conclusion, we show for the first time that full-scale MBT plants can be successfully modelled with a composting kinetic model.

© 2010 Elsevier Ltd. All rights reserved.

* Corresponding author. Address: Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal. Tel.: +351 918783348; fax: +351 213639460.
E-mail address: marcolcbaptista@gmail.com (M. Baptista).

0956-053X/ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.wasman.2010.04.021