Effect of sodium bentonite and vegetable oil blend supplementation on growth, carcass quality and intramuscular fatty acid composition of lambs

Eliana Jerônimoa, b, Susana P. Alvesa, b, Susana V. Martinsc, José A.M. Pratesc, Rui J.B. Bessaa, b, c, d, José Santos-Silvaa

a Unidade de Investigação em Produção Animal, INIBIS, Ponte Bonita, 2005-046 Vale de Santarém, Portugal
b SEQUIMB, ICIMAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Campus Agrário de Vairão, 4445-661 Vairão VC, Portugal
c CHISA, Centro de Investigação Interdisciplinar em Saúde Animal, Faculdade de Medicina Veterinária, Pêlo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal

\textbf{A R T I C L E I N F O}

Article history:
Received 25 September 2009
Received in revised form 12 April 2010
Accepted 14 April 2010

Keywords:
Carcass composition
Fatty acids
Lamb
Linseed oil
Sodium bentonite
Sunflower oil

\textbf{A B S T R A C T}

The effect of dietary sodium bentonite and a blend of sunflower and linseed oils at 1:2 (v/v) on growth, carcass and meat quality and fatty acid (FA) composition of longissimus dorsi muscle of lambs was studied. Thirty-two Merino Branco lambs with initial live weights (LW) of 16.2 ± 2.93 kg were divided according to a completely randomized experimental design within a 2 x 2 factorial arrangement of treatments in order to evaluate effects of the vegetable oil blend supplementation (0 g/kg versus 60 g/kg DM) and sodium bentonite inclusion in diets (0 g/kg versus 26 g/kg DM). The basal diet consisted of pellets with 750 g dehydrated lucerne/g DM and 250 g manioc/kg DM. The experimental period was 6 weeks. Bentonite affected neither daily LW gain, dry matter (DM) intake, nor carcass composition. However, bentonite decreased the 4th meat colour parameter (redness; \textit{P}<0.004). Oil supplementation affected neither daily LW gain, nor DM intake. However, it increased fat proportion in chump and shoulder cuts (\textit{P}<0.001), as well as kidney and knob channel fat (\textit{P}<0.001) while it decreased muscle proportion in the dissected cuts (\textit{P}<0.001). Oil supplementation increased intramuscular fat (\textit{P}<0.001) and most meat FA. Polyunsaturated FA (PUFA) increased 23% with oil supplementation (\textit{P}=0.007), mostly by increasing proportions of n-3 PUFA and biohydrogenation derived PUFA. Oil supplementation decreased n-6 long chain PUFA (\textit{P}=0.001). The proportion of n-3 long chain PUFA was not affected by oil supplementation, so the increase in n-3 PUFA from 1.99 g/100 g of total FA to 4.23 g/100 g of total FA (\textit{P}=0.001) was mainly due to the increase of \textit{ω}-linolenic acid (\textit{P}<0.001). However, when expressed in mg/100 g of meat, oil supplementation increased n-3 long chain PUFA concentration from 20 to 31 mg (\textit{P}<0.001). All biohydrogenation intermediates (BI) increased with oil supplementation, except for cis-11 18:1 which decreased, and cis-13 18:1 and trans-9, cis-10 18:2 which were unchanged. Conjugated linoleic acid increased with oil supplementation from 0.50 to 1.72 g/100 g of total FA (\textit{P}<0.001). Bentonite did not affect most meat FA, although effects occurred on some BI. Bentonite increased trans-11

\textit{Abbreviations}: BI, biohydrogenation intermediates; CLA, conjugated linoleic acid; CP, crude protein; DHA, docosahexaenoic acid; DM, dry matter; DPA, docosapentaenoic acid; EFA, essential fatty acid; EP, eicosapentaenoic acid; FA, fatty acids; FAME, FA methyl esters; KDCF, kidney and knob channel fat; LC-PUFA, long chain polyunsaturated FA; LW, live weights; MLFA, monounsaturated FA; NDF, neutral detergent fibre not assayd with a heat stable amylase and expressed inclusive of residual ash; PUFA, polyunsaturated FA; SFA, saturated FA.

* Corresponding author at: Faculdade de Medicina Veterinária - Universidade Técnica de Lisboa, Pêlo Universitário do Alto da Ajuda, 1300-477 Lisboa, Portugal. Tel.: +351 213 052 271; fax: +351 213 352 889.
E-mail address: rjbessa@fvm.utl.pt (R.J.B. Bessa).

0S77-8401/10 – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.anifeedsci.2010.04.010
18:1, but prevented the increase of trans-10 18:1 in meat from oil supplemented lambs \((P<0.001)\). Trans-11, cis-15 18:2, cis-9, cis-15 18:2 and cis-9, trans-11, cis-15 18:3 increased with dietary bentonite inclusion.