Variations in growth, survival and carbon isotope composition (δ^{13}C) among Pinus pinaster populations of different geographic origins

Isabel Correia1,2, Maria Helena Almeida1, Alexandre Aguiar3, Ricardo Alía4, Teresa Soares David3 and João Santos Pereira1

1 Instituto Superior de Agronomia (Dep. Eng. Florestal) Tapada da Ajuda, 1349-017 Lisboa, Portugal 3 Instituto Nacional dos Recursos Biológicos, I.P., Quinta do Marquês 2780-159 Oeiras, Portugal 4 Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria Carretera de la Coruña Km 7.5, 28040 Madrid, Spain

2 Corresponding author (esteves.ic@gmail.com)

Abstract

To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (δ^{13}C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupin, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, δ^{13}C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest δ^{13}C. Overall, the variation in δ^{13}C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between δ^{13}C and growth or survival revealed a distinct pattern for the Mediterranean population, with low δ^{13}C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between δ^{13}C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and δ^{13}C in contrasting environments will enhance our ability to select populations for forestry or conservation.

Keywords: climate change, drought tolerance, maritime pine, polycyclism, provenance trial, tree breeding

Received December 29, 2007; Accepted May 26, 2008