I-ReWater. UM PROJETO EUROPEU NO ÂMBITO DAS ESTRATÉGIAS DO USO DE ÁGUAS RESIDUAIS TRATADAS NA AGRICULTURA

O projeto I-ReWater pretende analisar o estado atual dos recursos hídricos na área do SUDOE, dando especial atenção ao uso de águas residuais tratadas na agricultura e aos seus efeitos na capacidade de produção e qualidade das culturas, promovendo também a resiliência e segurança no abastecimento de água, face aos cenários adversos de secas e escassez de água.

Paulo Brito da Luz¹, José Silvestre¹, Miguel Damásio¹, Miguel Campos², Paula Fernandes³, Javier José Cancela⁴, Maria Teresa Teijeiro⁴, Maria Huerta⁵

¹ Instituto Nacional de Investigação Agrária e Veterinária

² Águas do Norte, S.A.

³ Grupo AdP - Águas de Portugal

⁴ Universidade de Santiago de Compostela

⁵ Àrea Metropolitana de Barcelona

Projetos de investigação INTERREG-SUDOE

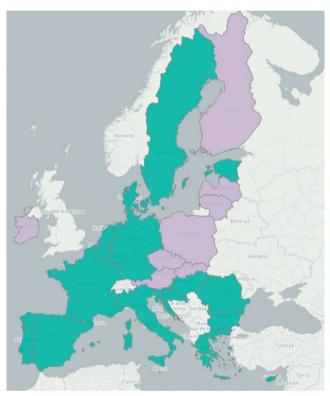

Num contexto de interligação dos setores da água, da energia, da alimentação e do ambiente, tem-se promovido o desenvolvimento da economia circular da água ao nível europeu. A agricultura, em particular, tem sofrido pressões para reduzir o consumo de recursos hídricos naturais, observando-se que em períodos sazonais de maior procura a disponibilidade pode ser insuficiente para as necessidades em muitas regiões. Na procura de soluções sustentáveis que reforcem a capacidade de abastecimento de água para o regadio, bastante atenção tem sido dada ao potencial de utilização das águas residuais tratadas (ART). As novas tecnologias, que permitem a redução de riscos de poluição ambiental e sanitários para as populações a par da produção de fertilizantes (azoto e fósforo), têm um importante papel na apresentação de estratégias de implementação da economia circular da água. Nesta perspetiva, os projetos sobre a utilização de ART no regadio na área geográfica do SUDOE, em que o I-ReWater se enquadra, têm obtido financiamento por parte de programas europeus de investigação.

Figura 1 - Área geográfica do SUDOE.

A área geográfica do SUDOE é caracterizada por um setor agrícola importante, onde os sistemas de rega são considerados essenciais para o desenvolvimento sustentável, em particular pelos efeitos adversos das alterações climáticas em climas mediterrânicos, em termos de ondas de calor e secas. Nestes climas, as necessidades de água são maiores nos períodos em que a precipitação é menor, pelo que a incorporação de ART nos balanços hídricos dos programas de rega permite a redução da utilização de recursos hídricos renováveis (associados à precipitação) dos ecossistemas.

A investigação tem procurado estabelecer sinergias com as autoridades dos setores das águas residuais e do regadio para a obtenção da informação necessária a uma gestão de água equilibrada por parte dos agricultores. No entanto, no espaço Europeu e a nível das regiões do SUDOE, é muito limitado o conhecimento baseado em estudos específicos sobre a adaptação de áreas agrícolas à utilização de ART, em termos de quantidade e qualidade. Constata-se que existem países em que o uso de ART no regadio ainda não está autorizado. O potencial de crescimento de utilização de ART é manifestamente alto, sobretudo para áreas onde o seu acesso é mais facilitado e os sistemas de rega e/ou as culturas são mais adequados.

Figura 2 – A verde, países da UE com autorização para uso de ART no regadio (2024).

Orientações estratégicas para a utilização de águas residuais tratadas na agricultura

Na Diretiva-Quadro da Água (WFD, 2000/60/EC), a legislação apontava já para garantias de qualidade da água nos seus diferentes usos, incluindo práticas de reutilização. Por outro lado, existem diversos processos de normalização, nacionais e internacionais, com orientações para a utilização de ART. Por exemplo, a Norma ISO 16075 (Orientações para o uso de águas residuais tratadas em projetos de rega) inclui várias publicações específicas para a reutilização da água no regadio. Os princípios básicos apresentados nesta norma incluem: 1) a relação de riscos associados às tecnologias de rega, às culturas e à saúde humana; 2) a definição de classes de qualidade da água; 3) recomendações de boas práticas e medidas de proteção. Refira-se que esta e outras normas têm sido uma base para a publicação de leis e regulamentos. Como nota de esclarecimento: Um regulamento (lei, decreto, diretiva) é

definido como de aplicação obrigatória; uma norma (standard) é um documento de referência aprovado por uma organização de normalização reconhecida (nacional ou internacional) para definir caracterizações e regras aplicáveis em atividades voluntárias, de acordo com qualidade, segurança, compatibilidade e impacte ambiental adequado em produtos, serviços ou práticas (Lazarova, 2015).

Em termos de legislação europeia, no âmbito dos requisitos mínimos para a reutilização de águas, foi publicado o Regulamento (UE) 2020/741 do Parlamento Europeu e do Conselho. Estabelece classes de qualidade de ART e a necessidade de garantias

para a segurança de pessoas e do ambiente, face aos riscos de produção de determinadas culturas. Como exemplos, referem-se os quadros seguintes, nos quais se identificam as classes de qualidade da água para reutilização e as utilizações e métodos de rega permitidos para cada classe. Outros aspetos relativos à gestão de riscos, ao controlo, à monitorização e a medidas preventivas são também mencionados no Regulamento, tendo o suporte de normas internacionais, como é o caso da ISO 16075. No espaço SUDOE procuram-se as melhores soluções para a gestão do regadio em períodos de secas e escassez hídrica, de acordo com medidas

Quadro 1 – Classes de qualidade da água para reutilização e utilizações agrícolas e métodos de rega permitidos

Classe de qualidade mínima da água para reutilização	Categoria de culturas (*)	Método de rega		
A	Todas as culturas alimentares consumidas cruas em que a parte comestível entra em contacto direto com água para reutilização, e culturas de raízes consumidas cruas	Todos os métodos de rega		
В	Culturas alimentares consumidas cruas em que a parte comestível é produzida acima do nível do solo e não entra em contacto direto com água para reutilização, culturas alimentares transformadas e culturas não alimentares, incluindo culturas usadas para a alimentação de animais produtores de leite ou carne	Todos os métodos de rega		
С	Culturas alimentares consumidas cruas em que a parte comestível é produzida acima do nível do solo e não entra em contacto direto com água para reutilização, culturas alimentares transformadas e culturas não alimentares, incluindo culturas usadas na alimentação de animais produtores de leite ou carne	Rega gota a gota (**) ou outro método de rega que evite o contacto direto com a parte comestível da cultura		
D	Culturas industriais, energéticas e para produção de sementes	Todos os métodos de rega (***)		

^(*) Se o mesmo tipo de cultura regada for abrangido por várias categorias do Quadro 1, aplicam-se os requisitos da categoria mais rigorosa.

^(**) A rega gota a gota é um sistema de microrrega capaz de fornecer gotas ou fluxos muito reduzidos de água às plantas, mediante o gotejamento de água no solo ou diretamente sob a sua superfície a um ritmo muito baixo (2-20 litros/hora), a partir de um sistema de tubos de plástico de pequeno diâmetro equipados com bocais designados por gotejadores ou microaspersores. (***) No caso dos métodos de rega que imitam a chuva, deve prestar-se especial atenção à proteção da saúde dos trabalhadores ou das pessoas que se encontrem nas proximidades. Para o efeito, devem ser aplicadas medidas preventivas adequadas.

Quadro 2 – Requisitos de qualidade da água para reutilização para fins de rega agrícola											
Classe	Matatanalijai	Requisitos de qualidade									
de qualidade da água para reutilização	Meta tecnológica indicativa	<i>E. coli</i> (n.º/100 ml)	CBO₅ (mg/l)	SST (mg/l)	Turvação (UTN)	Outros					
A	Tratamento secundário, filtração e desinfeção	≤ 10	≤ 10	≤ 10	≤ 5	Legionella spp.: < 1 000 UFC/l sempre que exista um risco					
В	Tratamento secundário e desinfeção	≤ 100	Em conformidade	Em conformidade com a Diretiva 91/271/CEE (Anexo I, Quadro 1)	-	de aerossolização					
С	Tratamento secundário e desinfeção	≤ 1 000	com a Diretiva 91/271/CEE		-	Nematódeos intestinais (ovos de helmintas): ≤ 1 ovo/l					
D	Tratamento secundário e desinfeção	≤ 10 000	(Anexo I, Quadro 1)		_	no caso da rega de pastos ou forragens					

legislativas que promovem a poupança de água e a economia circular. Neste sentido, a reutilização da água e as técnicas de fertirrega (com a inclusão de nutrientes da água reutilizada) são contributos importantes. Por outro lado, para o cumprimento de requisitos de utilização, com custos ainda significativamente altos, uma política de incentivos torna-se prioritária. Como referências nacionais do espaço SUDOE, relativamente à aplicação de regulamentos e normas sobre a reutilização da água no regadio destacam-se:

- 1) **Portugal.** Decreto-lei 119/2019 sobre a produção e a sustentabilidade da utilização de águas residuais tratadas. Decreto-lei 16/2021 sobre a responsabilidade do Sistema Multimunicipal na recolha, tratamento e rejeição de efluentes. Publicação do Guia para a Reutilização de Água (APA, 2019), com grande foco nas avaliações qualitativas dos riscos para o ambiente ou saúde pública, decorrentes da reutilização da água. Ações de comunicação e sensibilização junto dos principais stakeholders do setor da água (agricultura, indústria, turismo, etc.) para promover a prática de reutilização de água (AdP e entidades gestoras). Participação no desenvolvimento de normas ISO.
- 2) **Espanha**. O Decreto Real 1620/2007 estabeleceu o regime legal da utilização de águas regeneradas para uso agrícola, sendo substituído em 2024 pelo Decreto Real 1085/2024 para enquadrar

- abordagens inovadoras em termos da gestão dos riscos e promoção do uso da água regenerada para diferentes usos junto com o agrícola. De acordo com a Lei 3/2000, de 12 de julho, de "Saneamiento y Depuración de Aguas Residuales de la Región Murcia e Implantación del Canon de Saneamiento" e no quadro das autonomias políticas refere-se a existência de medidas legislativas mais específicas para a Andaluzia, Catalunha, Murcia, Comunitat Valenciana. Assim, como a inclusão nos Planos de Bacia da totalidade das "Confederaciones Hidrográficas". Por outro lado, na Galiza o serviço de tratamento de águas residuais é mencionado como parte integrante da melhoria do ciclo hidrológico.
- 3) **França.** Legislação específica desde 2010. Decretos publicados em 2023 para harmonização com o Regulamento Europeu 2020/741.

Relatórios nacionais e internacionais sobre as ART

Com base em relatórios das Nações Unidas e da Organização Mundial da Saúde (OMS-WHO, 2024), é dada no quadro seguinte informação sobre produção, recolha e tratamento de águas residuais domésticas nos países envolvidos no projeto I-ReWater. Mais de 40 000 hm³ de águas residuais domésticas são tratadas na Europa anualmente, mas apenas cerca de 2,4% posteriormente utilizadas.

Quadro 3 – Águas residuais domésticas produzidas e tratadas									
País ou Região ou Mundo	Total de águas residuais domésticas produzidas (milhões m³)		Total de águas residuais domésticas recolhidas (milhões m³)		Total de águas residuais domésticas tratadas (milhões m³)		Proporção de águas residuais domésticas tratadas (%)		
	2020	2022	2020	2022	2020	2022	2020	2022	
Andorra	3	4	3	4	3	4	100	100	
França	2839	2774	2627	2583	2627	2582	93	88	
Portugal	483	470	382	436	355	411	74	88	
Espanha	2425	2410	2126	2118	2085	1925	86	80	
Europa & América do Norte	42 769	70 003	38 826	66 342	34 405	60 535	80	87	
Mundo	270 674	267 734	157 340	169 022	150 232	154 729	56	58	

Nota: 1 milhão de m³ = 1 hm³

Portugal e Espanha apresentam grande constraste na distribuição dos Recursos Hídricos Renováveis (RHR) e áreas com clima semiárido, onde o regadio tem um grande peso. Por outro lado, as situações de risco de sobre-exploração, contaminações e salinização crescem com o avançar das alterações climáticas.

Em Portugal, observa-se atualmente um valor próximo de 1200 hm3 de águas residuais totais recolhidas de todos os setores (650 hm3 - setor em baixa ou municipal e 550 hm3 - setor em alta ou multimunicipal) e cerca de 60% (700 hm³) são tratadas, maioritariamente do setor em alta. No entanto, apenas cerca de 1,2% do volume tratado nas estações de tratamento são reutilizadas e quase sempre em uso próprio (ERSAR, 2024). No âmbito dos estudos do I-ReWater e das suas atividades com águas residuais (associadas ao Sistema Multimunicipal), a ADN está a implementar um plano de ação regional que estabelece objetivos que promovam aumentos do consumo de ART pela via interna e possibilidade do seu alargamento a uma utilização externa, sobretudo na agricultura. Tem o objetivo de atingir 90% das necessidades totais de água nas suas instalações na Região de Trás-os-Montes serem supridas com recurso a ART, mais ambicioso dos valores definidos na Estratégia Nacional para a Reutilização de Água (10% em 2025 e 20% em 2030) e que constitui, em si mesmo, um excelente exemplo de confiança e de boas práticas perante a sociedade. Em Espanha, também a diversidade climática explica a grande variabilidade da utilização de ART, sendo nas áreas de maior falta de RHR que se concentra essa utilização. A Comunidade Valenciana é das que utiliza um maior volume de ART e a Comunidade de Múrcia é aquela com a maior percentagem, utilizando 90% das águas residuais produzidas (MI-TECO, 2020). Com o desenvolvimento de projetos para promover a economia circular e a adaptação às alterações climáticas foi possível atingir valores entre 7 e 13% na utilização de ART. Esta utilização está mais associada ao regadio com uma percentagem superior a 60%.

Em França, o volume global de ART produzido anualmente nos diferentes setores está estimado

em 8400 hm³. Assumindo uma taxa média de 20% de ART, anualmente, existe um potencial de cerca de 1600 hm³ para uso no período sazonal de maior uso (CEREMA, 2020). Contudo, menos de 1% de ART são atualmente recicladas e apenas 0,1% são reutilizadas na agricultura. Um plano foi apresentado em 2023 para uma maior utilização de águas não convencionais, que inclui as ART. O objetivo é alcançar uma poupança global de 10% de água e utilizar 10% das ART de origem doméstica, cerca de 300 hm³.

O Projeto I-ReWater

Dado este enquadramento inicial informativo, o I-ReWater intitulado: "Gestão dos Recursos Hídricos na agricultura de regadio na área do SUDOE" é um projeto do programa INTERREG-SUDOE (2021–2027), financiado pelo Fundo Europeu de Desenvolvimento Regional (FEDER). Nele participa um consórcio de 16 entidades de Espanha, Portugal, França e Andorra, liderado pela Universidade de

Figura 3 - O projeto I-ReWater.

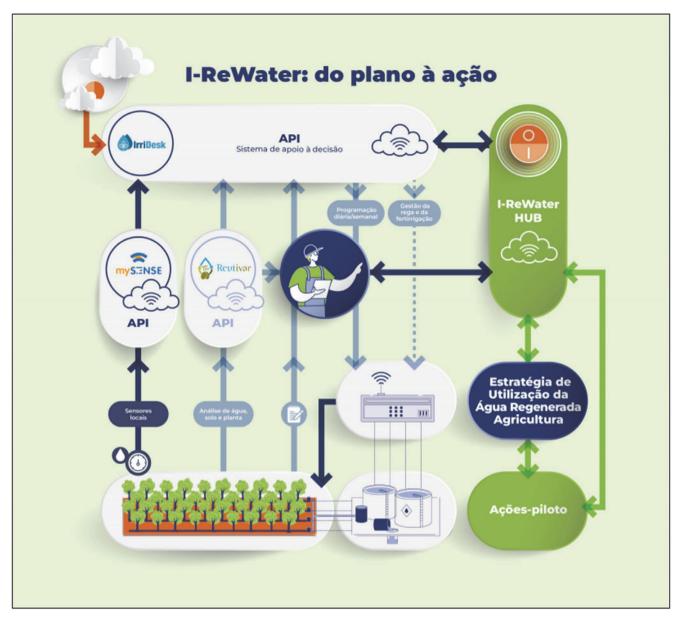


Figura 4 - I-ReWater: do plano à ação.

Santiago de Compostela (USC). Da parte portuguesa estão presentes o Instituto Nacional de Investigação Agrária (INIAV), a Universidade de Trás-os--Montes e Alto Douro (UTAD), o Instituto Politécnico de Bragança (IPB) e Águas do Norte (ADN).

No âmbito da promoção de ART são necessários estudos sobre o potencial atual de recursos hídricos renováveis nos ecossistemas naturais e sobre a viabilidade da incorporação e aplicação de ART pelos agricultores. Nos objetivos do I-ReWater integram-se atividades de levantamento de informação

de parâmetros e indicadores, a diferentes escalas geográficas e temporais, relacionados com as condições climáticas e hidrológicas. Por conseguinte, com o conhecimento das disponibilidades ART das estações de tratamento e da sua proximidade às áreas regadas, são estabelecidos os passos necessários para se determinar o potencial físico e económico da sua utilização. Associam-se ainda atividades de campo (ações-piloto) para 13 ensaios de culturas lenhosas (olival, vinha, amendoal e lúpulo) e 2 de hortícolas (tomate e melancia). Os resultados

obtidos nestas atividades, a nível agronómico, ambiental e social, permitirão o desenvolvimento de um sistema de apoio à decisão (SAD) como ferramenta para ajustar as melhores soluções de balanços hídricos nas práticas de rega, bem como a formulação de estratégias para o desenvolvimento da "economia circular da água" e da "agricultura 4.0". O projeto, com diferentes grupos de trabalho, está a preparar um plano estratégico transnacional para a incorporação de ART no regadio, de acordo com princípios de boas práticas agroambientais, integrando temáticas como: 1) Disponibilidade de recursos hídricos renováveis (subterrâneos e superficiais); 2) Balanços hídricos; 3) Adaptação a condições de seca e escassez em cenários futuros de alterações climáticas; 4) Necessidades de água das culturas; 5) Uso eficiente e rega deficitária; 6) Qualidade da água; 7) Economia circular da água; e 8) Impacte ambiental utilizando metodologicamente a "Análise do Ciclo de Vida" e análises socioeconómicas (a nível técnico, económico e político). ©

Bibliografia

APA (2019). Guia para a reutilização de água para usos não potáveis. Agência Portuguesa do Ambiente. Lisboa. 192p. CEREMA (2020). Reuse of Treated Wastewater: The French Overview. Knowledge Collection, Center for Studies and Expertise on Risks, Environment, Mobility, and Urban Planning. 46p.

ERSAR (2024). Relatório Anual dos Serviços de Águas e Resíduos em Portugal. Volume 1 – Caracterização do Setor de Águas e Resíduos. Entidade Reguladora dos Serviços de Águas e Resíduos. Lisboa.

EU (2020). Regulamento (EU) 2020/741 do Parlamento Europeu e do Conselho de 25 de maio de 2020 sobre os requisitos mínimos para a reutilização de águas.

Lazarova, V. (2015). ISO standards on water reuse for irrigation. June 25th, 2015 – Suez Environment Presentation.

MITECO (2020). Fomento de la reutilización de las aguas residuales (Borrador). Informe complementario, Madrid. https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/concesiones-y-autorizaciones/6_ic_reutilizacion_1_tcm30-514162.pdf.

UN Habitat and WHO (2021, 2024). Progress on wastewater treatment – Global status and acceleration needs for SDG indicator 6.3.1. United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO), Geneva.