

ADNET:
UMA FERRAMENTA
PARA A GESTÃO
DA DOENÇA DO AMIEIRO
EM CORREDORES
RIBEIRINHOS

O patógeno Phytophthora ×alni é mais um dos fatores causadores do declínio do amieiro, já afetado pela ação humana, que ameaça os corredores ribeirinhos do Norte e Centro de Portugal. A ferramenta online ADnet ajuda os gestores a identificar fatores de risco e prevenir a infeção dos amieiros.

Inês Gomes Marques^{1,2}, Teresa Soares David^{1,3}, Pedro Segurado¹, Patricia María Rodríguez González¹

¹ Centro de Estudos Florestais, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa

² CE3C - Centro de Ecologia, Evolução e Alterações Ambientais, Laboratório Associado CHANGE, Faculdade de Ciências, Universidade de Lisboa

³ Instituto Nacional de Investigação Agrária e Veterinária

As florestas ribeirinhas e o amieiro

As florestas ribeirinhas desempenham funções ecológicas essenciais e fornecem importantes serviços de ecossistema nos habitats ribeirinhos, como o melhoramento da qualidade da água e fixação de azoto. Recentemente, foi descoberto que a maior parte da Península Ibérica (exceto algumas bacias do Nordeste Ibérico) e o Norte de África (Marrocos) albergam uma espécie endémica de amieiro, o Alnus lusitanica (amieiro-ibérico, Sanna et al., 2023; Vít et al., 2017).

O amieiro-ibérico domina as margens de rios e ribeiras de fluxo permanente, ou florestas pantanosas que estejam permanentemente húmidas (Rodríguez-González, 2008). É uma árvore folhosa caducifólia de crescimento rápido, de tamanho médio (normalmente cresce até 10-25 m), com uma casca rugosa e fissurada, e folhas verde-escuras com uma forma obovada (Figura 1). O amieiro-comum (Alnus glutinosa (L.) Gaertn.) encontra-se com o amieiro-ibérico no Nordeste da Península Ibérica, onde coexistem, mas não formam híbridos. As duas espécies diferenciam-se pela sua distribuição geográfica (amieiros-ibéricos de origem natural ocorrem apenas na Península Ibérica e Marrocos) e algumas características morfológicas, entre as quais o comprimento do pedúnculo dos amentilhos femininos (maior no amieiro-ibérico) e a forma das

Figura 1 – Aspeto interior de amial palustre. Local: Correlhã. Bacia do Lima.

lenticelas dos rebentos anuais (ovais no amieiro-ibérico e redondos no amieiro-comum; Vít et al., 2017). O amieiro-ibérico também apresenta características de resiliência a temperaturas elevadas quando comparado com o amieiro-comum (Gomes Marques et al., 2025).

As florestas de amieiro estão incluídas como uma das prioridades de conservação na Diretiva Habitat Europeia 92/43/CEE, constituindo um habitat prioritário (91E0* "Florestas aluviais com Alnus glutinosa e Fraxinus excelsior"). Em Portugal, os amieiros podem ser encontrados em conjunto com outras espécies arbóreas, como o freixo (Fraxinus spp.), a bétula (Betula spp.), o salgueiro (Salix spp.) e com diversas espécies herbáceas (Rodríguez González et al., 2008).

O declínio do amieiro

O declínio das florestas de amieiro, visível por toda a Europa e incluindo Portugal, põe em risco o bom funcionamento e a sobrevivência dos corredores ribeirinhos (Figura 2). O comércio cada vez mais globalizado de material vegetal para reprodução e plantação tem contribuído para a emergência de novas pragas e doenças nas florestas de amieiros, como é o caso dos patógenos do grupo Phytophthora spp. O principal responsável pelo recente aumento no declínio é uma doença causada pelo patógeno P. ×alni, que se encontra atualmen-

Figura 2 – Mortalidade de amieiros em corredor ribeirinho. Local: Bacia do Corgo, Vila Real.

te em expansão pela Península Ibérica. O patógeno Phytophthora ×alni foi detetado em amieiros ingleses na década de 90 do século passado (Gibbs et al., 1995), tendo-se desde então espalhado até às bacias do Norte e Centro de Portugal (Kanoun-Boulé et al., 2016). Tendo em conta a rápida expansão da doença e aos seus efeitos devastadores nas florestas de amieiros, tem-se verificado um crescente esforço de investigação sobre o patógeno (como se reproduz, como se espalha e como infeta a árvore) e da interação com o amieiro (Vincent et al., 2025; Macháčová et al., 2024), principalmente na Europa Central.

A ocorrência de temperaturas elevadas extremas, a variação no regime de precipitação e o aumento dos períodos de seca também afetam negativamente os amieiros, particularmente nas regiões do sul de Portugal, que apresentam climas mais quentes e secos durante os meses de primavera e verão. Por exemplo, a escassez na precipitação pode interromper o fluxo de água em setores a montante com bacias de drenagem mais pequenas, ameaçando a sobrevivência do amieiro. A conjugação da doença com as alterações climáticas pode tomar contornos mais complexos, resultando no aumento ou diminuição do declínio (dependendo da interação entre a doença, o clima e o patógeno).

Como adoecem os amieiros?

Os sintomas mais comuns associados ao declínio de amieiro causado por P. ×alni incluem a presença de desfoliação e ramos mortos, necroses escuras na casca e folhas pequenas e amareladas (Figura 3). A P. ×alni consegue infetar árvores através das raízes, pelas lenticelas do tronco e pela zona do colo da árvore, propagando-se de forma ascendente pelo tronco e danificando os tecidos que fazem o transporte da seiva. As estruturas infeciosas (i.e., os zoósporos) são bastante móveis em meio aquoso pois apresentam cílios próprios para locomoção e, portanto, a água propicia a dispersão da doença de umas árvores infetadas para outras. Consequentemente, a difusão da doença ocorre normalmente na direção montante → jusante, sendo que o risco de introdução e propagação de P. ×alni no ecossistema ribeirinho aumenta com a:

- i) presença e/ou introdução de amieiros infetados.
- ii) proximidade a viveiros florestais com amieiros ou locais que tenham plantas no chão ou contentores, e
- iii) ocorrência de pastoreio ou áreas de lazer nas proximidades, pois poderá ocorrer o transporte acidental da doença (particularmente quando animais ou pessoas estiveram anteriormente num local com plantações de amieiros ou viveiros florestais).

A suscetibilidade do amieiro ao patógeno pode ser maior dependendo da posição da árvore no curso de água ou florestas pantanosas. Se o amieiro estiver em contacto permanente com água, particularmente durante a primavera e verão, e se a água estiver estagnada durante mais que um dia à altura da base do tronco da árvore, o amieiro terá uma maior hipótese de ser infetado e entrar em declínio (Gomes Marques et al., 2024). Além disso, os extremos de temperatura podem influenciar a emergência do patógeno e a intensidade dos danos provocados. Os invernos mais quentes podem potenciar a sobrevivência de *Phytophthora* e, por isso, prolongar o período em que podem infetar as árvores e, pelo contrário, temperaturas consecutivamente inferiores a

Figura 3 - Amieiro com sintomas de declínio: necrose no tronco (lado esquerdo); desfoliação e folhas amareladas (lado direito). Local: Lagoas de Bertiandos e São Pedro d'Arcos, bacia do Lima. Ponte de Lima.

-1 °C podem levar à morte do patógeno (Redondo et al., 2015). Porém, a variabilidade das árvores - tanto morfológica e fisiológica (características observadas) como genética - pode beneficiar a resiliência às doenças, se as características necessárias forem hereditárias.

A ADnet – uma ferramenta para gerir o declínio do amieiro

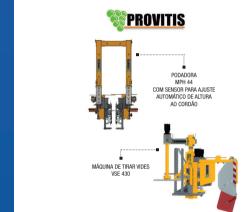
Devido ao papel ecológico fundamental do amieiro no funcionamento dos rios e à crescente incidência de declínio induzido por Phytophthora ×alni, é crucial disponibilizar ferramentas de apoio à decisão que auxiliem gestores e proprietários na prevenção das causas e mitigação dos efeitos da doença. O projeto ALNUS (https://www.isa.ulisboa.pt/proj/ alnus/pt/) propôs-se a avaliar o estado do declínio do amieiro em Portugal continental e criar uma ferramenta de suporte que predissesse a vulnerabilidade das populações de amieiro e priorizasse as áreas a gerir. Assim, surgiu a Alder Decline Network (ADnet, Gomes Marques et al., 2024) - uma ferramenta que integra informação sobre os principais fatores que afetam a sobrevivência de P. ×alni e a sua introdução em florestas de amieiro, e prevê a probabilidade de infeção dos amieiros em ecossistemas ribeirinhos (Figura 4).

A ADnet integra informação proveniente de literatura científica, conhecimento especializado e dados recolhidos no terreno. A ferramenta foi criada entre Janeiro de 2021 e Julho de 2024, através de

SÃO JOÃO DA PESQUEIRA

T. 254 489 150

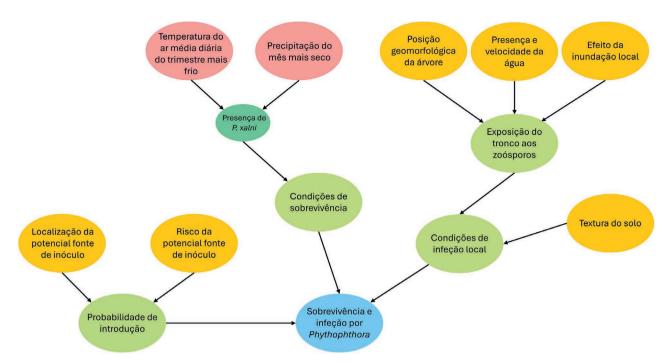
FILIAL


VILA REAL T. 259 342 147

GERAL@JOPAUTO.PT

CONCESSIONÁRIO

NEW HOLLAND



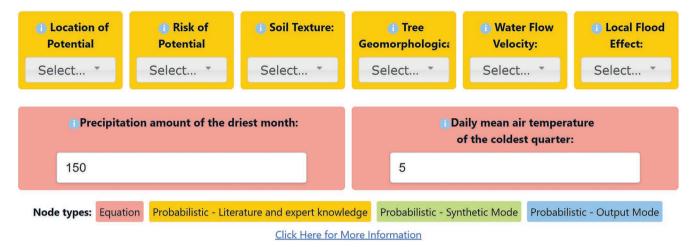
ESLADROADORAS ENTRECEPAS VIDES DE TIRAR MÁQUINA DESPONTADORAS AMPARADORAS PRÉ-PODADORAS

Figura 4 – Rede conceptual da ADnet, com os fatores considerados para calcular a probabilidade de infeção de amieiros em ecossistemas ribeirinhos.

um processo dinâmico e interativo entre os investigadores do projeto ALNUS e o conhecimento de especialistas em ecologia e ecofisiologia do amieiro, e em *Phytophthora* ×alni. O conhecimento de especialistas foi recolhido através de técnicas de elicitação (e.g. focus groups), tendo contado com 19 especialistas de 12 instituições e oito países diferentes. Os especialistas auxiliaram na criação de uma base de dados com informação sobre 1189 locais na Europa a partir dos quais a presença e ausência de P. ×alni foi modelada com base em variáveis climáticas.

Resultados obtidos pela ADnet demonstram que temperaturas amenas e elevada precipitação são fatores-chave para a sobrevivência do patógeno. Períodos de cheia (i.e. períodos em que o amieiro esteja em contacto permanente com água por mais que um dia), água parada ou estagnada e solos mais argilosos aumentam também a probabilidade de incidência de doença. Devido ao contacto constante da água com o tronco e raízes (resultante da presença de água parada ou estagnada e da elevada capacidade de retenção hídrica dos solos argilosos), os zoósporos apresentam uma maior probabilidade de infeção, beneficiando da sua locomoção

na água e do prolongado tempo de contacto com o amieiro.


A ADnet permite apoiar decisões de gestão e a transferência de conhecimento na abordagem ao declínio do amieiro induzido por P. ×alni, quer à escala local quer regional, na Europa. A implementação de ações de gestão que evitem tanto a plantação de árvores potencialmente infetadas como a remoção de estruturas de contenção de cheias em zonas afetadas pela doença poderá reduzir a incidência da doença em florestas ribeirinhas e limitar a sua expansão.

A metodologia estatística (i.e. estatística Bayesiana) utilizada para a criação da ADnet baseia-se numa abordagem em que a dedução e atualização de probabilidades é feita à medida que novas informações e dados são obtidos. Assim, a ADnet poderá ser expandida atualizando a base de dados sobre a ocorrência do patógeno, nomeadamente os seus limites de distribuição.

Como usar a ADnet? – Um exemplo prático

Qualquer pessoa pode ter acesso à ADnet através do website do projeto ALNUS (https://www.isa.

ADnet: Alder decline bayesian network

Figura 5 – A ferramenta online, no website do projeto ALNUS. Fonte: website ALNUS, https://www.isa.ulisboa.pt/proj/alnus/pt/results/alnus-decline-net-adnet/.

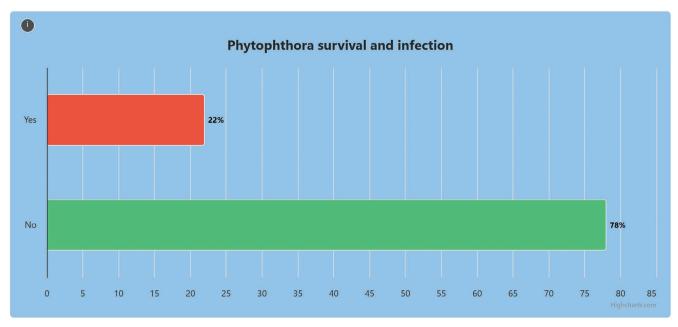
ulisboa.pt/proj/alnus/pt/results/alnus-decline-net-adnet/) e esta é apresentada na língua portuguesa e inglesa, assim como o Guia de Utilização. Para obter um valor final de probabilidade, o utilizador deverá dar informação sobre o local de estudo para o qual quer obter a probabilidade de infeção por P. ×alni (Figura 5). É necessária informação sobre:

- Condições locais (e.g., localização do local de estudo em relação às fontes potenciais de doença, localização da árvore e variáveis hidromorfológicas). Estas condições estão apresentadas a laranja na Figura 5. O utilizador deverá selecionar uma das opções automaticamente disponibilizadas pela ferramenta.
- Condições climáticas (precipitação e temperatura). Estes estão apresentados a rosa (Figura 5). O utilizador deverá escrever o valor (aproximado ou exato) pedido em cada condição.

Assim que a informação sobre as condições locais e climáticas for adicionada à ADnet, esta irá calcular automaticamente a probabilidade de "Sobrevivência e infeção por Phytophthora".

Tomemos como exemplo um local no Centro de Portugal (por exemplo, Coimbra) que tem outras árvores infetadas a montante, apresenta um solo com uma grande proporção de argila, e em que o

Tabela 1 – Exemplo de preenchimento da *ADnet* para um exemplo prático, no Centro de Portugal


Fator	Opção
Localização da potencial fonte de inóculo	Montante ("Upstream")
Risco da potencial fonte de inóculo	Elevado ('High Risk')
Textura do solo	Franco argiloso ('Clay Loam')
Posição geomorfológica da árvore	Contacto permanente com água ("Permanent water contact")
Presença e velocidade da água	Lento ('Slow')
Efeito da inundação local	Cheia ('Flood')
Temperatura do ar média diária do trimestre mais frio	8 °C
Precipitação do mês mais seco	12 L/m² (ou mm)

colo dos amieiros fica ocasionalmente submergido durante a primavera (Tabela 1). Colocaríamos, então, as seguintes opções na ferramenta:

Ao adicionarmos estes valores à ferramenta, vemos que esta indica que existe 22% de probabilidade de um amieiro neste local ser afetado pelo declínio (Figura 6). ③

Agradecimentos

Um agradecimento a todos os especialistas e membros do projeto ALNUS que contribuíram para a construção da

Figura 6 – Probabilidade de infeção por Phytophthora ×alni calculada pela ADnet para o exemplo prático deste artigo. Fonte: website ALNUS, https://www.isa.ulisboa.pt/proj/alnus/pt/results/alnus-decline-net-adnet/.

ferramenta. A ferramenta ADnet foi realizada no âmbito do projeto ALNUS "Avaliação da resistência de Alnus glutinosa ao efeito conjunto de uma doença emergente e stress climático: predição da resiliência dos bosques de amieiro nas redes hidrográficas" financiado pela Fundação para a Ciência e Tecnologia (FCT) com a referência PTDC/ASP-SIL/28593/2017. O Centro de Estudos Florestais, o Laboratório Terra, o CE3C e o Laboratório CHANGE são financiados por fundos nacionais através da FCT no âmbito dos Projeto UID/00239/2025, LA/P/0092/2020, UID/00329/2023 e LA/P/0121/2020, respectivamente A coordenação é do ISA, sendo o INIAV.IP parceiro.

Bibliografia

Gibbs, J.N. (1995). Phytophthora root disease of alder in Britain. DOI: 10.1111/j.1365-2338.1995.tb01118.x.

Gomes Marques, I. et al. (2024). The ADnet Bayesian belief network for alder decline: Integrating empirical data and expert knowledge. DOI: 10.1016/j.scitotenv.2024.173619.

Gomes Marques, I. et al. (2025). Phenotypic variation and genetic diversity in European Alnus species. DOI: 10.1093/forestry/cpae039.

Kanoun-Boulé, M. et al. (2016). Phytophthora alni and Phytophthora lacustris associated with common alder decline in Central Portugal. DOI: 10.1111/efp.12273.

Macháčová, M. et al. (2024). Response of Alnus glutinosa to Phytophthora bark infections at ambient and elevated $\rm CO_2$ levels. DOI: 10.3389/ffgc.2024.1379791.

Redondo, M. et al. (2015) Winter Conditions Correlate with Phytophthora alni Subspecies Distribution in Southern Sweden. DOI: 10.1094/PHYTO-01-15-0020-R.

Rodríguez Gonzalez, P.M. (2008). Os bosques higrófilos ibero-atlânticos. Tese de doutoramento, Universidade Técnica de Lisboa.

Rodríguez-González, P.M. et al. (2008). Spatial variation of wetland woods in the latitudinal transition to arid regions: a multiscale approach. DOI: 1111/j.1365-2699.2008.01900.x.

Sanna, M. et al. (2023). Contribución al conocimiento de la distribución de las especies de Alnus en el sur de Europa a partir del ADNcp. ISSN 1577-1814.

Vincent, M. et al. (2025). Phytophthora alni Infection Reinforces the Defense Reactions in Alnus glutinosa-Frankia Roots to the Detriment of Nodules. DOI: 10.1094/MPMI-12-24-0160-R.

Vít, P. et al. (2017). Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa – An analysis based on morphometry, karyology, flow cytometry and microsatellites. DOI: 10.12705/663.4.