

# **GO QualiMilho**

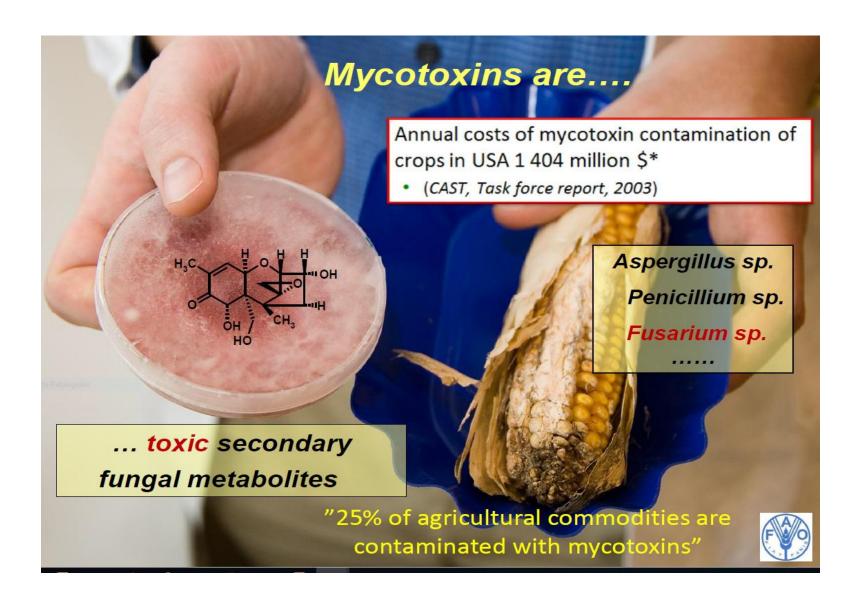
Novas estratégias de integração sustentaveis que garantam a qualidade e segurança na fileira do milho nacional

# Carla Brites 20 Setembro 2018



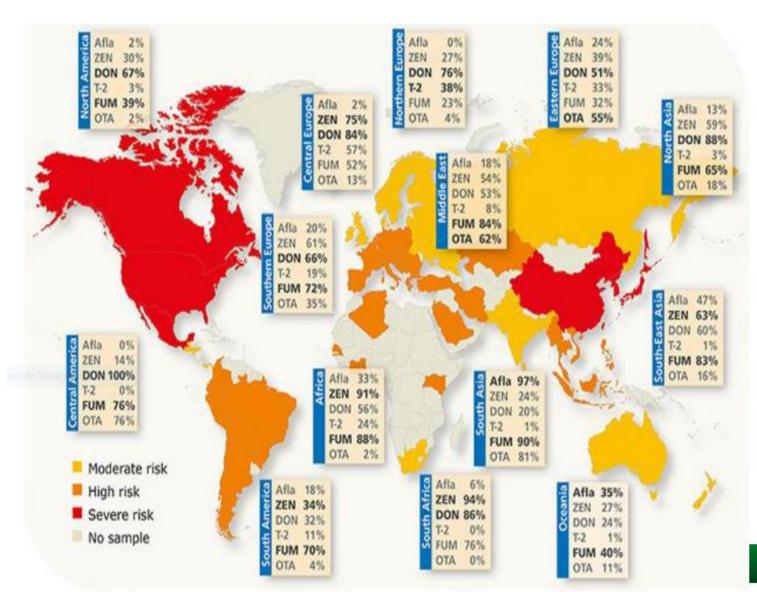












### **IMPACTO DAS MICOTOXINAS**





### RISCO DE OCORRÊNCIA







### LIMITES MÁXIMOS PERMITIDOS



#### Micotoxinas [µg/kg]-Alimentação humana

| País      | Fumonisinas | DON       | Aflatoxinas | Ocratoxina A | Zearalenona |
|-----------|-------------|-----------|-------------|--------------|-------------|
| UE        | 200-4000    | 200-1750  | 0.1-15.0    | 0.5-30       | 20-100      |
| China     |             | 1000      | 0.5-20.0    | 5            | 60          |
| EUA       | 2000-4000   | 1000      | 20          |              |             |
| Canadá    |             | 1000-2000 | 15          |              |             |
| Japão     | 1100        | 50        | 10          |              |             |
| Austrália |             |           | 15          |              |             |
| Argentina |             |           | 20-30       |              |             |

FONTE: Academy of State Administration of Grain, P.R. China, 2017

## LIMITES MÁXIMOS PERMITIDOS



| Micotoxinas [μg/kg] -Alimentação humana                                    |                                                   |                             |                      |              |             |  |  |  |
|----------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|----------------------|--------------|-------------|--|--|--|
|                                                                            | Fumonisinas                                       | DON                         | Aflatoxinas          | Ocratoxina A | Zearalenona |  |  |  |
| Milho não<br>transformado*                                                 | 4000                                              | 1750                        | 5 (B1)<br>10 (total) | 5            | 350         |  |  |  |
| Frações moagem<br>milho (não consumo<br>humano direto)<br>≤500µm<br>>500µm | 2000<br>1400                                      | 1250<br>750                 | -                    | -            | 300<br>200  |  |  |  |
| Cereais consumo humano direto                                              | 1000 (à base de milho)<br>800 (cereais p. almoço) | 750 (farinhas)<br>500 (pão) | 2 (B1)<br>4 (total)  | 3            | 75          |  |  |  |
| Alimentos para<br>lactentes e crianças<br>jovens                           | 200                                               | 200                         | 0,1                  | 0,5          | 20          |  |  |  |

Fonte: Reg CE nº 1881/2006 consolidado; \*- teores máximos não se aplicam ao milho não transformado destinado à moagem por via húmida (produção de amido).

### **MICOTOXINAS-ORIGEM**



| Tipo de micotoxina    | Espécies de fungos produtores (AAspergillus; FFusarium) | Principal ocorrência |  |
|-----------------------|---------------------------------------------------------|----------------------|--|
| Aflatoxinas           | A. flavus; A. parasiticus                               | Armazenamento        |  |
| Ocratoxina A (OTA)    | A. ochraceus; A. carbonarius;<br>Penicillum verrucosum  | Armazenamento        |  |
| Desoxinivalenol (DON) | F. culmorum; F. graminearum                             | Campo                |  |
| Zearalenona (ZEA)     | F. culmorum; F. graminearum                             | Campo                |  |
| Fumonisinas           | F. verticillioides; F. proliferatum;<br>F. moniliforme  | Campo                |  |

# FATORES DE MITIGAÇÃO



### Campo

- 1. Gestão dos resíduos da cultura precedente
- 2. Reduzir os fungos patogénicos no solo
- 3. Escolher variedade de acordo com as classes de risco
- 4. Proteger a cultura do ataque de insetos
- 5. Antecipação da colheita

#### Pós-Colheita

- 1. Evitar pré-armazenagem de grão húmido
- 2. Gestão eficiente da secagem

### Armazenagem

- 1. Limpeza do grão
- 2. Circulação do grão
- 3. Controle da temperatura e humidade do grão

### Plano de amostragem



#### I- Amostragem e preparação de amostras

- Retirar aleatoriamente várias porções incrementais do lote e misturar por forma a obter uma amostra agregada
- Obter uma amostra global por porção amostrada (ou lote)
- A amostra global de pelo menos 5 kg deve ser limpa e homogeneizada por trituração
- A homogeneização por trituração significa que deve passar por um crivo de 1 mm

#### II-Empacotamento e transporte das amostras

- -Colocar em recipiente limpo, inerte, protegido da luz em ambiente fresco e seco
- -Amostras bem identificadas

#### III-Preparação da amostra

- -Deve evitar-se exposição à luz porque as micotoxinas são sensíveis à luz ultra violeta assim como a temperatura e humidade que favoreça o crescimento de fungos
- -Realizar uma pré-secagem no caso da humidade ser superior a 14%.
- -Toda a amostra (5kg) deve ser moída e homogeneizada porque a distribuição das micotoxinas é muito heterogénea. Depois da moenda o moinho deve ser limpo para evitar contaminações cruzadas.
- As análises das micotoxinas devem realizar-se em 3 porções (repetições) de 50g retiradas aleatoriamente depois da amostra ter sido moída e homogeneizada.

### **EQUIPE DO INIAV NO QUALIMILHO**



Gestão e coordenação do GO no INIAV:

Carla Brites

Definição do plano de amostragem:

Carla Brites

Quantificação das micotoxinas – Atualização de metodologias:

Jorge Barbosa, Andreia Freitas, Ana Sanches

Monitorização dos fungos tóxicos – Identificação das espécies:

Eugénia Andrade, Eugénio Diogo, Bolseiro a contratar

Prospeção de outros parâmetros de qualidade do grão:

Carla Brites

Participação nos ensaios de campo:

José Semedo